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Pencil beam scanning: 

 Small proton beams (spots) are directed into the target

 Depth is adjusted by energy change (70 MeV to 230 MeV) and pre-absorber usage

Introduction – Proton pencil beam scanning
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Pre-absorber



Dose distribution: 1 Field

Introduction – Proton pencil beam scanning
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Dose distribution: 3 Field Plan

Introduction – Proton pencil beam scanning
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Dose [%]



Monte Carlo simulation models for proton pencil beam scanning are not an off-the

shelf tool.

How much do Monte Carlo simulated doses depend on the model setup?

Monte Carlo for proton pencil beam scanning
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Comissioning data PSI Gantry 2

Comparison of two Monte Carlo engines for
proton pencil beam scanning
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Comissioning data PSI Gantry 2

Comparison of two Monte Carlo engines for
proton pencil beam scanning
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2 independently set up models The Christie modelThe PSI model



Comissioning data PSI Gantry 2

Comparison of two Monte Carlo engines for
proton pencil beam scanning
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The Christie modelThe PSI model

Compare dose results in simple geometric

setups and in patient geometries

2 independently set up models



Comissioning data PSI Gantry 2

Comparison of two Monte Carlo engines for
proton pencil beam scanning
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Compare dose results in simple geometric

setups and in patient geometries

How much do Monte Carlo simulated
doses depend on the model setup?

2 independently set up models The Christie modelThe PSI model



Overview
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How much do Monte Carlo simulated doses depend on the model setup?

• Setup of the two Monte Carlo systems

• Comparison of the doses calculated with the two Monte Carlo systems in simple 

geometries & patient geometries

 Without pre-absorber

 With pre-absorber

• Discussion

 Which factors are critical when setting up the Monte Carlo system?

 How big are the remaining differences?



Setup of the two Monte Carlo systems
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• Choose Monte Carlo code, toolkit and physics

Setup Monte Carlo model for proton pencil
beam scanning

Page 13Procedure adapted from Fix, M. K. (2016). Monte Carlo in Medical Physics,  Monte Carlo Simulations – General Recipe [Powerpoint slides] 



• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Setup Monte Carlo model for proton pencil
beam scanning
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Monte Carlo model



• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Include pre-absorber either as physical component [1,2] or in beam parameters [3]

Setup Monte Carlo model for proton pencil
beam scanning
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[1] GRASSBERGER, C., et al. 2015. Phys Med Biol, 60, 633-45.

[2] GREVILLOT, et al. 2011. Phys Med Biol, 56, 5203-19.

[3] FRACCHIOLLA, F., et al. 2015. Phys Med Biol, 60, 8601-19.

Pre-absorber

Monte Carlo model



• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Include pre-absorber either as physical component [1,2] or in beam parameters [3]

• Beam model: Fine tune beam input parameters, such that simulation results agree 

with comissioning data

Setup Monte Carlo model for proton pencil
beam scanning
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Proton beam 



• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Include pre-absorber either as physical component [1,2] or in beam parameters [3]

• Beam model: Fine tune beam input parameters, such that simulation results agree 

with comissioning data

• Lateral spot profiles in air

Setup Monte Carlo model for proton pencil
beam scanning

Page 18

Proton beam 



• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Include pre-absorber either as physical component [1,2] or in beam parameters [3]

• Beam model: Fine tune beam input parameters, such that simulation results agree 

with comissioning data

• Lateral spot profiles in air
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Proton beam 
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• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Include pre-absorber either as physical component [1,2] or in beam parameters [3]

• Beam model: Fine tune beam input parameters, such that simulation results agree 

with comissioning data

• Lateral spot profiles in air

Setup Monte Carlo model for proton pencil
beam scanning
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Proton beam 
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• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Include pre-absorber either as physical component [1,2] or in beam parameters [3]

• Beam model: Fine tune beam input parameters, such that simulation results agree 

with comissioning data

• Lateral spot profiles in air

• Integral depth dose curves in water

Setup Monte Carlo model for proton pencil
beam scanning
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• Choose Monte Carlo code, toolkit and physics

• Decide where to start the model & which components to include

Include pre-absorber either as physical component [1,2] or in beam parameters [3]

• Beam model: Fine tune beam input parameters, such that simulation results agree 

with comissioning data

• Lateral spot profiles in air

• Integral depth dose curves in water

Setup Monte Carlo model for proton pencil
beam scanning
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70 MeV



PSI model

Which Monte Carlo code, toolkit and physics?

Decide where to start the model & which components to include

Fine tune beam input parameters, such that simulation results agree with 
comissioning data

Setup of the two Monte Carlo models
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The Christie model

Monte Carlo:
Physics:

Geometry:
Pre-absorber:

Beam model:
CT calibration: 



Setup of the two Monte Carlo models
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The Christie model

Gate, GEANT4 10.02.p01
QGSP_BIC

Monte Carlo:
Physics:

PSI model

TOPAS, GEANT4 10.02.p01
Topas default list [1]

[1] JARLSKOG, C. Z. & PAGANETTI, H. 2008. IEEE Transactions on nuclear science, 55, 1018-1025.

.



PSI model

TOPAS, GEANT4 10.02.p01
Topas default list

Beam start: -47.8 cm (nozzle exit)

Setup of the two Monte Carlo models
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The Christie model
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PSI model The Christie model



PSI model

TOPAS, GEANT4 10.02.p01
Topas default list
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Physical object in the beam

Setup of the two Monte Carlo models

Page 28

The Christie model

Gate, GEANT4 10.02.p01
QGSP_BIC

Beam start: -74.1 cm (MU chamber)
Modify beam optics

Monte Carlo:
Physics:

Geometry:
Pre-absorber:
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PSI model

TOPAS, GEANT4 10.02.p01
Topas default list

Beam start: -47.8 cm (nozzle exit)
Physical object in the beam

Independently tuned such that each system matches same commissioning data

Setup of the two Monte Carlo models
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The Christie model

Gate, GEANT4 10.02.p01
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PSI model

TOPAS, GEANT4 10.02.p01
Topas default list

Beam start: -47.8 cm (nozzle exit)
Physical object in the beam

Independently tuned such that each system matches same commissioning data
Matched in each system

Setup of the two Monte Carlo models
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The Christie model

Gate, GEANT4 10.02.p01
QGSP_BIC

Beam start: -74.1 cm (MU chamber)
Modify beam optics

Monte Carlo:
Physics:

Geometry:
Pre-absorber:

Beam model:
CT calibration: 

PSI model The Christie model



Comparison of the two Monte Carlo systems
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Single spots air

Single spots in water

Comparison of the two Monte Carlo models
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Check the tuning
of the two models



Single spots air

Single spots in water

Single spots in bone & brain

Patient fields in water

Patient fields in the CT

Comparison of the two Monte Carlo models
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Check the tuning
of the two models

Compare the two
models



Results without pre-absorber
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Tuning: Spot sizes in air
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The Christie

PSI

Measurements

70 MeV

150 MeV

230 MeV



Tuning: Spot sizes in air
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Good agreement

between both

Monte Carlo 

engines and

measurements

(0.2 mm)

The Christie

PSI

Measurements



70 MeV

150 MeV

230 MeV



Tuning: Range in water
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Range difference

< 0.2 mm

The Christie

PSI
70 MeV

150 MeV

230 MeV



Tuning: Range in water
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Ranges match in water, 

the material we used for

the tuning of the two

systems
Range difference

< 0.2 mm

The Christie

PSI



70 MeV

150 MeV

230 MeV



Range in bone & brain
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Range 

difference:

3.7 mm (bone) 

4.8 mm (brain)

The Christie

PSI70 MeV

150 MeV

230 MeV



Range in bone & brain
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Ranges do not match in 

other materials than

water.

Range 

difference:

3.7 mm (bone) 

4.8 mm (brain)

The Christie

PSI



70 MeV

150 MeV

230 MeV



PSI model The Christie model

Patient fields in the CT
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Dose [%]



PSI model The Christie model

Patient fields in the CT
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PSI – Christie
Dose [%] Dose Diff [%]



PSI model The Christie model

Patient fields in the CT
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PSI – Christie
Dose [%] Dose Diff [%]

[%]



PSI model The Christie model

Patient fields in the CT
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PSI – Christie

Absolute dose difference: 

PSI higher than Christie

Range difference: 

Christie deeper than PSI

Dose [%] Dose Diff [%]

[%]



• Difference due to different default ionisation potentials of water.

• Ionisation potential: Energy needed to remove one electron from the atom.

Ionisation potentials
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• Difference due to different default ionisation potentials of water.

• Ionisation potential: Energy needed to remove one electron from the atom.

• The Christie system: 

 Water is defined using its elemental composition

 Resulting ionisation potential: I = 69 eV

• PSI system: 

 Water is defined as Geant 4 default water

 Resulting ionisation potential: I = 78 eV

Ionisation potentials
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This would have never been

found by comparing

simulations to

measurements in water!



• Difference due to different default ionisation potentials of water.

• Ionisation potential: Energy needed to remove one electron from the atom.

• The Christie system: 

 Water is defined using its elemental composition

 Resulting ionisation potential: I = 69 eV

• PSI system: 

 Water is defined as Geant 4 default water

 Resulting ionisation potential: I = 78 eV

How much do Monte Carlo simulated doses depend on the model setup?

Pay close attention to ionisation potentials!

Ionisation potentials
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This would have never been

found by comparing

simulations to measurements

in water!



Results without pre-absorber
After retuning The Christie system with I = 78 eV
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After retuning The Christie system with I = 78 eV:

Ranges agree within 0.15 mm for all materials

Absolute doses agree within 0.25%

Tuning: Spots in water & bone & brain
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The Christie

PSI

The Christie

PSI


70 MeV

150 MeV

230 MeV

70 MeV

150 MeV

230 MeV



Patient fields in the water tank
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PSI model The Christie model PSI – Christie

Christie model versus PSI model: 
Gamma analysis: 100% (2%,2mm); ≥ 99.6% (1%,1mm)
98% of the voxels agree within 1.5%

Dose [%]

Dose Diff [%]

[%]



Patient fields in the water tank
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Christie model versus PSI model: 
Gamma analysis: 100% (2%,2mm); ≥ 99.6% (1%,1mm)
98% of the voxels agree within 1.5%

Measurement versus PSI & Christie model: 
- Relative doses: fullfill clinical criteria 100 % (3%,3mm) 
- Absolute dose: Both models are 1%-3% lower than

measurements

PSI model The Christie model PSI – ChristieDose [%]

Dose Diff [%]

[%]



PSI model The Christie model

Patient fields in the CT

Page 53

PSI – Christie
Dose [%] Dose Diff [%]



PSI model The Christie model

How much do our results depend on the model

setup?

Excellent clinical agreement:

Gamma analysis: 

99.9% (2%,2mm); 94% - 98% (1%,1mm)

Patient fields in the CT
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PSI – Christie
Dose [%] Dose Diff [%]



PSI model The Christie model

How much do our results depend on the model

setup?

Excellent clinical agreement:

Gamma analysis: 

99.9% (2%,2mm); 94% - 98% (1%,1mm)

Remaining dose difference:

86% of the voxels agree within 1.5%

98 % of the voxels agree within 2.5%

Patient fields in the CT
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PSI – Christie
Dose [%] Dose Diff [%]

[%]



Results with pre-absorber
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The Christie system PSI system: 



Spot sizes in air with pre-absorber
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Good agreement

between both Monte 

Carlo engines and

measurements

(0.35 mm)

The Christie

PSI

Measurements

230 MeV

160 MeV

70 MeV



Ranges agree within 0.22 mm for all materials

Range in water & bone & brain with
pre-absorber
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The Christie

PSI

The Christie

PSI



70 MeV

160 MeV

230 MeV

70 MeV

160 MeV

230 MeV



Systematic absolute dose differences of 4% - 7%  

The Christie model predicts higher dose than the PSI model

Range in water & bone & brain with
pre-absorber
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The Christie

PSI

The Christie

PSI


70 MeV

160 MeV

230 MeV

70 MeV

160 MeV

230 MeV



Systematic absolute dose differences of 4% - 7%  

The Christie model predicts higher dose than the PSI model

Water tank measurement versus PSI & Christie model: 

PSI model is 1%-2% lower; Christie model is 5%-7% higher than measurements

Range in water & bone & brain with
pre-absorber
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The Christie

PSI

The Christie

PSI


70 MeV

160 MeV

230 MeV

70 MeV

160 MeV

230 MeV



PSI model The Christie model
Scaled by 7%

Patient fields in the CT

PSI – Christie Scaled
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Dose [%]
Dose Diff [%]



PSI model The Christie model
Scaled by 7%

How much do Monte Carlo simulated doses

depend on the model setup?

With different pre-absorber models: 

• Excellent clinical agreement for relative doses: 

99.6% (2%,2mm); 94% - 99% (1%,1mm)

• Absolute doses do not agree – proton loss due 

to the pre-absorber

Patient fields in the CT

PSI – Christie Scaled
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Dose [%]
Dose Diff [%]

[%]



Key messages
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Monte Carlo simulations for proton pencil beam scanning is not an off-the shelf

tool.

How much do Monte Carlo simulated doses depend on the model setup?

Summary
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Monte Carlo simulations for proton pencil beam scanning is not an off-the shelf

tool.

How much do Monte Carlo simulated doses depend on the model setup?

• A tuned system is only reliable within the bounds of its tuning

 Pay close attention to ionisation potentials

 Be careful when not modelling physical objects

• How accurate can we be?

 Excellent agreement in water and in patient CT

 Remaining dose differences of up to 2.5%

Summary
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• Global Challenge Network+ in Advanced Radiotherapy (https://www.advanced-

radiotherapy.ac.uk)

 Multi-Scale Monte Carlo Modelling for Radiotherapy Sandpit

 March 2017, Manchester, UK

• Two related projects:

 Aitkenhead A. et al: Physical and software phantoms for proton therapy

 Nixon. A. et al: Sensitivity TEsting and Analysis using Monte CArlo for 

RadioTherapy (STEAMCART) 

Outlook
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• Need to verify Monte Carlo simulations not only in water but also in additional 

materials: 

 Dose distributions simulated in the water used for the tuning will always fit 

measurements in water

 Need additional benchmarking in non-water materials

Aim:  Standard phantom design for MC benchmarking

Physical and software phantoms for proton
therapy
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Picture courtesy: Adam Aitkenhead



• What is the influence of ionisation potentials used within the CT?

 Even for elements, ionisation potentials reported in literature are subject to

high fluctuations [1]

 How much does this influence patient calculations?

• Which other values could be important?

Aim: Produce a tool which can be used to perform sensitivity testing on TOPAS & 

GATE to identify physical parameters contributing to uncertainty in dose. 

Sensitivity TEsting and Analysis using Monte 
CArlo for RadioTherapy (STEAMCART)

Page 68[1] DOOLAN, P. J. et al. 2016. Phys Med Biol, 61, 8085 – 8104.
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Wir schaffen Wissen – heute für morgen

Two Monte Carlo 

models for the same 

spot scanning Gantry

have been set up, 

showing …

• That a tuned system

is only reliable within

the bounds of its

tuning. Pay attention

to ionisation

potentials and

physical objects.

• Excellent agreement

between the

simulated dose 

distributions and

measurements. 


