PAUL SCHERRER INSTITUT

Carla Winterhalter1,2, Adam Aitkenhead³ , Sairos Safai¹ , Damien C. Weber¹ , Ranald I. MacKay³ , Antony J. Lomax¹

¹Paul Scherrer Institute, Villigen, Switzerland ²Funded by a research grant of Varian Medical Systems Particle Therapy GmbH, Germany ³The Christie NHS Foundation Trust, Manchester, UK

Comparison of two Monte Carlo calculation engines for proton pencil beam scanning

International Conference on Monte Carlo Techniques for Medical Applications 16th of October 2017

Pencil beam scanning:

- Small proton beams (spots) are directed into the target
- Depth is adjusted by energy change (70 MeV to 230 MeV) and pre-absorber usage

Pencil beam scanning:

- Small proton beams (spots) are directed into the target
- Depth is adjusted by energy change (70 MeV to 230 MeV) and pre-absorber usage

Dose distribution: 1 Field

Dose [%]

Dose distribution: 3 Field Plan

Dose [%]

Monte Carlo for proton pencil beam scanning

Monte Carlo simulation models for proton pencil beam scanning are not an off-the shelf tool.

How much do Monte Carlo simulated doses depend on the model setup?

Comparison of two Monte Carlo engines for proton pencil beam scanning

Comissioning data PSI Gantry 2

The PSI model 2 **independently** set up models **The Christie model**

How much do Monte Carlo simulated doses depend on the model setup?

How much do Monte Carlo simulated doses depend on the model setup?

- Setup of the two Monte Carlo systems
- Comparison of the doses calculated with the two Monte Carlo systems in simple geometries & patient geometries
	- Without pre-absorber
	- With pre-absorber
- Discussion
	- Which factors are critical when setting up the Monte Carlo system?
	- How big are the remaining differences?

Setup of the two Monte Carlo systems

• Choose Monte Carlo code, toolkit and physics

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]

[1] GRASSBERGER, C., et al. 2015. *Phys Med Biol,* 60**,** 633-45. [2] GREVILLOT, et al. 2011. *Phys Med Biol,* 56**,** 5203-19. [3] FRACCHIOLLA, F., et al. 2015. *Phys Med Biol,* 60**,** 8601-19.

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data
	- Lateral spot profiles in air

Proton beam

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data
	- Lateral spot profiles in air

Proton beam

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data

Proton beam

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data
	- Lateral spot profiles in air
	- Integral depth dose curves in water

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data
	- Lateral spot profiles in air
	- Integral depth dose curves in water

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data
	- Lateral spot profiles in air
	- Integral depth dose curves in water

- Choose Monte Carlo code, toolkit and physics
- Decide where to start the model & which components to include Include pre-absorber either as physical component [1,2] or in beam parameters [3]
- Beam model: Fine tune beam input parameters, such that simulation results agree with comissioning data
	- Lateral spot profiles in air
	- Integral depth dose curves in water

PSI model

The Christie model

Which Monte Carlo code, toolkit and physics? Monte Carlo: Physics:

Decide where to start the model & which components to include Geometry: Pre-absorber:

Fine tune beam input parameters, such that simulation results agree with comissioning data Beam model: CT calibration:

PSI model

Monte Carlo: Physics:

TOPAS, GEANT4 10.02.p01 Topas default list [1]

The Christie model

Gate, GEANT4 10.02.p01 QGSP_BIC

PSI model

- TOPAS, GEANT4 10.02.p01 Monte Carlo:
- Topas default list Physics:
- Beam start: -47.8 cm (nozzle exit) Geometry:

The Christie model

Gate, GEANT4 10.02.p01 QGSP_BIC

Beam start: -74.1 cm (MU chamber)

PSI model and the Christie model

Page 27

PSI model

TOPAS, GEANT4 10.02.p01 Monte Carlo: Physics:

Topas default list

Beam start: -47.8 cm (nozzle exit) Physical object in the beam Geometry: Pre-absorber:

The Christie model

Gate, GEANT4 10.02.p01 QGSP_BIC

Beam start: -74.1 cm (MU chamber) Modify beam optics

Page 28

PSI model

TOPAS, GEANT4 10.02.p01 Topas default list Monte Carlo: Physics:

The Christie model

Gate, GEANT4 10.02.p01 QGSP_BIC

Beam start: -47.8 cm (nozzle exit) Physical object in the beam Geometry: Pre-absorber:

Beam start: -74.1 cm (MU chamber) Modify beam optics

Independently tuned such that each system matches same commissioning data Beam model:

PSI model

TOPAS, GEANT4 10.02.p01 Topas default list Monte Carlo: Physics:

The Christie model

Gate, GEANT4 10.02.p01 QGSP_BIC

Beam start: -47.8 cm (nozzle exit) Physical object in the beam Geometry: Pre-absorber:

Beam start: -74.1 cm (MU chamber) Modify beam optics

Independently tuned such that each system matches same commissioning data Matched in each system Beam model: CT calibration:

Comparison of the two Monte Carlo systems

Comparison of the two Monte Carlo models

Results without pre-absorber

Tuning: Spot sizes in air

Good agreement between both Monte Carlo engines and measurements (0.2 mm)

PAUL SCHERRER INSTITUT

 $VAR IAN _{medical systems}$

Tuning: Range in water

Ranges match in water, the material we used for the tuning of the two systems

Range in bone & brain

Range in bone & brain

 I_{O}

- Difference due to **different default ionisation potentials of water.**
- **Ionisation potential**: Energy needed to remove one electron from the atom.

- Difference due to **different default ionisation potentials of water.**
- **Ionisation potential**: Energy needed to remove one electron from the atom.
- **The Christie system**:
	- Water is defined using its elemental composition
	- Resulting ionisation potential: **I = 69 eV**
- **PSI system**:
	- Water is defined as Geant 4 default water
	- Resulting ionisation potential: **I = 78 eV**

- Difference due to **different default ionisation potentials of water.**
- **Ionisation potential**: Energy needed to remove one electron from the atom.
- **The Christie system**:
	- Water is defined using its elemental composition
	- Resulting ionisation potential: **I = 69 eV**
- **PSI system**:
	- Water is defined as Geant 4 default water
	- Resulting ionisation potential: **I = 78 eV**

This would have never been found by comparing simulations to measurements in water!

- Difference due to different default ionisation potentials of water.
- Ionisation potential: Energy needed to remove one electron from the atom.
- **The Christie system**:
	- Water is defined using its elemental composition
	- Resulting ionisation potential: **I = 69 eV**
- **PSI system**:
	- Water is defined as Geant 4 default water
	- Resulting ionisation potential: **I = 78 eV**

This would have never been found by comparing simulations to measurements in water!

How much do Monte Carlo simulated doses depend on the model setup?

Pay close attention to ionisation potentials!

Results without pre-absorber After retuning The Christie system with $I = 78$ eV

PAUL SCHERRER INSTITUT

Christie model versus PSI model:

Gamma analysis: 100% (2%,2mm); ≥ 99.6% (1%,1mm) 98% of the voxels agree within 1.5%

Page 51

Christie model versus PSI model:

Gamma analysis: 100% (2%,2mm); ≥ 99.6% (1%,1mm) 98% of the voxels agree within 1.5%

Measurement versus PSI & Christie model:

- Relative doses: fullfill clinical criteria 100 % (3%,3mm)
- Absolute dose: Both models are 1%-3% lower than measurements

Page 52

How much do our results depend on the model setup?

Excellent clinical agreement:

Gamma analysis: 99.9% (2%,2mm); 94% - 98% (1%,1mm)

**How much do our results depend on the model
setup?
Excellent clinical agreement:
Gamma analysis:
99.9% (2%,2mm); 94% - 98% (1%,1mm)
** 6 **
** 6 **setup?**

Excellent clinical agreement:

Gamma analysis: 99.9% (2%,2mm); 94% - 98% (1%,1mm)

Remaining dose difference:

86% of the voxels agree within 1.5% 98 % of the voxels agree within 2.5%

Results with pre-absorber

The Christie system PSI system:

Spot sizes in air with pre-absorber

Good agreement between both Monte Carlo engines and measurements (0.35 mm)

Range in water & bone & brain with pre-absorber

Ranges agree within 0.22 mm for all materials

Range in water & bone & brain with pre-absorber

Systematic **absolute dose differences** of 4% - 7% The **Christie model** predicts higher dose than the **PSI model**

Range in water & bone & brain with pre-absorber

Systematic **absolute dose differences** of 4% - 7% The **Christie model** predicts higher dose than the **PSI model**

Water tank measurement versus PSI & Christie model:

PSI model is 1%-2% lower; Christie model is 5%-7% higher than measurements

How much do Monte Carlo simulated doses depend on the model setup?

With different pre-absorber models:

- Excellent clinical agreement for relative doses: 99.6% (2%,2mm); 94% - 99% (1%,1mm)
- Absolute doses do not agree proton loss due to the pre-absorber

Key messages

Monte Carlo simulations for proton pencil beam scanning is not an off-the shelf tool.

How much do Monte Carlo simulated doses depend on the model setup?

Monte Carlo simulations for proton pencil beam scanning is not an off-the shelf tool.

How much do Monte Carlo simulated doses depend on the model setup?

- A tuned system is only reliable within the bounds of its tuning
	- P Pay close attention to ionisation potentials
	- Be careful when not modelling physical objects
- How accurate can we be?
	- $-$ Excellent agreement in water and in patient CT
	- $-$ Remaining dose differences of up to 2.5%

- Global Challenge Network+ in Advanced Radiotherapy (https://www.advancedradiotherapy.ac.uk)
	- Multi-Scale Monte Carlo Modelling for Radiotherapy Sandpit
	- March 2017, Manchester, UK
- Two related projects:
	- Aitkenhead A. et al: Physical and software phantoms for proton therapy
	- $-$ Nixon. A. et al: Sensitivity TEsting and Analysis using Monte CArlo for RadioTherapy (STEAMCART)

Physical and software phantoms for proton therapy

- Need to verify Monte Carlo simulations not only in water but also in additional materials:
	- Dose distributions simulated in the water used for the tuning will always fit measurements in water
	- Need additional benchmarking in non-water materials

Picture courtesy: Adam Aitkenhead

Sensitivity TEsting and Analysis using Monte CArlo for RadioTherapy (STEAMCART)

- What is the influence of ionisation potentials used within the CT?
	- Even for elements, ionisation potentials reported in literature are subject to high fluctuations [1]
	- $-$ How much does this influence patient calculations?
- Which other values could be important?

Aim: Produce a tool which can be used to perform sensitivity testing on TOPAS & GATE to identify physical parameters contributing to uncertainty in dose.

Wir schaffen Wissen – heute für morgen

Two Monte Carlo models for the same spot scanning Gantry have been set up, showing …

- That a tuned system is only reliable within the bounds of its tuning. Pay attention to ionisation potentials and physical objects.
- Excellent agreement between the simulated dose distributions and measurements.

